Unbalanced dice do not roll randomly. And casinos replace their dice often. Casino dice have machine-tooled straight edges. These edges eventually wear down, accumulating imperfections. Imperfections add bias to rolls. Casino dice are larger and straighter than board gaming dice because players must throw the dice so far on a craps table. An even money bet, made on the first roll of the dice (known as the “come out roll”). You win if a 7 or 11 roll, or lose if 2, 3, or 12 roll (known as “craps”). Any other number that rolls becomes the “point” and the point must roll again before a 7 to win. CRAPS How To Play. The person whose turn it is to roll the dice is the “shooter.” The results of the shooter’s rolls will determine the outcome. For all players. On the shooter’s first roll, or “come-out,” players wager by placing chips on either the Pass Line or the Don’t Pass Line.

I was wondering how to alter dice in the game of craps so it hits 7 or 11 every time can you help. thank you.

Alter then so that one die has a six on every side, and the other one has all ones and fives.

Do you believe that 'wishful thinking' on behalf of the players can affect the outcome of a game. Note that I'm not concerned with the SIZE of the effect, just your philosophical opinion. Also, do you think that the manner in which a player tosses the dice in craps can cause a bias (good or bad) in the outcome. As always, your site is AWESOME.

Thanks for the kind words. No, I don't think that wishful thinking helps in the casino, all other things being equal.
The question on the dice influence is a hotly debated topic. Personally, I'm very skeptical. As I review this reply in 2013 I still have yet to see convincing evidence anybody can influence enough to have an advantage.

Just wondering about your opinion of altering the frequency table in craps by pre-setting the dice.

I'm very skeptical of it. I go over some of the experiments on the topic in my craps appendix 3.

I recently learned some information about dicesetting strategies in craps. Some believe that you can set the dice a certain way before the throw, and by keeping the roll of the dice to just one axis of rotation, you can have fewer possible sevens with certain dice sets. I wanted to know if there is any truth to this or is it just a fallacy.

I don’t believe in it. So far I have yet to see a name I respect endorse the method, nor any evidence that it works. While I don’t entirely rule out the possibility I am extremely skeptical of it. I may live in Nevada but when it comes to things like dice setting I’m from Missouri, 'show me' it works.

Are dice truly unbiased? It seems like the sides with the larger numbers which have more holes would be lighter than the sides with the smaller numbers and less holes. This seems to suggest that the heavier sides would more likely land face down with the larger numbers more likely landing face up. I can imagine a craps system that could try to exploit this principle, but I wonder if it would really work. What do you think?

With ordinary dice, the like those you get in a board game, this is true. However casino dice have inlaid spots. At the factory they drill holes for the spots then insert white colored spots into the holes, of the same density as the die itself. So the die is essentially a perfect cube. Even if they did use ordinary dice from a board game I doubt the bias would be nearly enough to overcome the house edge.

Do you believe the toss of the dice at a Casino Craps table is truly random as a RNG would be, or are there good shooters and bad shooters either thru dice 'mechanics' or plain sloppy throwing (short throws as an example), if real world Casino Craps is not truly random , how would I take advantage of this?

I think there is no such thing as a naturally bad shooter. With the possible exception of a few pros all dice throws can be considered truly random. There are seminars on how to overcome the house edge in craps by precession throwing but I make no claims for or against them. I have yet to see enough evidence either way.

In the October issue of Casino Player magazine, Frank Scoblete wrote an article on controlled dice shooting where you state you lost $1800 to Stanford Wong when he rolled only 74 sevens in 500 rolls. Why did you bet on such a small sample (500)? A person who claims to be able to control the dice should be willing to demonstrate their skill with a least 50,000 rolls. Am I wrong in thinking that 500 rolls is such a small sample that just about anything could happen?

I lost the $1800 to another gambling writer, not Stanford. I would have preferred more rolls but there was an obvious time contraint. Assuming one throw per minute it would take 34.7 days to throw the dice 50,000 times. I wasn’t the one who decided on 500 but it seemed like a reasonable compromise between a large sample size and time. You are right that 500 is too few to make a good case for or against influencing the dice, but 500 throws is better than zero.

I know you’re skeptical of dice control. I have been practicing dice setting and controlled shooting for 3 months. What is the probability of throwing 78 sevens over 655 throws randomly? Thanks for the help :)

For large numbers of throws we can use the Gaussian Curve approximation. The expected number of sevens in 655 throws is 655 × (1/6) = 109.1667. The variance is 655 × (1/6) × (5/6) = 90.9722. The standard deviation is sqr(90.9722) = 9.5379. Your 78 sevens is 109.1667 − 78 = 31.1667 less than expectation. This is (31.1667 - 0.5)/9.5379 = 3.22 standard deviations below expectation. The probability of falling 3.22 or more standard deviations south of expectations is 0.000641, or 1 in 1,560. I got this figure in Excel, using the formula, normsdist(-3.22).

This is about controlling the dice at Craps. You previously discussed the Stanford Wong Experiment, stating, 'The terms of the bet were whether precision shooters could roll fewer than 79.5 sevens in 500 rolls of the dice. The expected number in a random game would be 83.33. The probability of rolling 79 or fewer sevens in 500 random rolls is 32.66%.... The probability of rolling 74 or fewer sevens in 500 random rolls is 14.41%.'

The question I have about this bet is that 14.41% still isn’t 'statistically significant' [ i.e. p < 0.05 ] , which is usually taken to mean greater than two Standard Deviations from the Mean -- or a probability of less than a *combined* 5% of the event happening randomly on EITHER end of the series.

How many Sevens would have to be rolled in 500 rolls before you could say that there is a less than 2.5% chance that the outcome was entirely random (i.e. that the outcome was statistically significant) ?

Many Thanks & BTW , yours is ABSOLUTELY the BEST web site on the subject of gambling odds & probabilities that I’ve found .... keep up the good work !!!

Thank you for the kind words. You should not state the probability that the throws were non-random is p. The way it should be phrased is the probability that a random game would produce such a result is p. Nobody expected 500 rolls to prove or disprove anything. It wasn’t I who set the line at 79.5 sevens, but I doubt it was chosen to be statistically significant; but rather, I suspect the it was a point at which both parties would agree to the bet.

The 2.5% level of significance is 1.96 standard deviations from expectations. This can be found with the formula =normsinv(0.025) in Excel. The standard deviation of 500 rolls is sqr(500*(1/6)*(5/6)) = 8.333. So 1.96 standard deviations is 1.96 * 8.333 = 16.333 rolls south of expectations. The expected number of sevens in 500 throws is 500*(1/6) = 83.333. So 1.96 standard deviations south of that is 83.333 − 16.333 = 67. Checking this using the binomial distribution, the exact probability of 67 or fewer sevens is 2.627%.

Three years ago, in an Ask The Wizard column, you wrote: 'You are right that 500 is too few to make a good case for or against influencing the dice, but 500 throws is better than zero.' Can you describe what you would require from an alleged dice influencer, in an experiment, in order for you to feel confident enough to start betting significant amounts of money on him? I ask because one billion rounds is a good benchmark for 'reliable' results in some blackjack sims. With the most efficient (i.e. requiring least amount of rolls) experimental design you can think of, how many rolls would need to be made by the shooter to be confident he is influencing the outcomes? I know the answer will depend on the skill of the shooter, but you get my drift. If you need a million rolls even under the best case scenario, it’s not going to be a worthwhile endeavor.

There is no definitive point at which confidence is earned. It is a matter of degree. First, I would ask what is being tested for, and what the shooter estimates will happen. With any test there are two possible errors. A skilled shooter might fail, because of bad luck, or a random shooter might pass because of good luck. Of the two, I would prefer to avoid a false positive. I think a reasonable test would set the probability of a false negative at about 5%, and a false positive at about 1%.

For example, suppose the claimant says he can average one total of seven every seven throws of the dice. A random shooter would throw one seven every six throws, on average. By trial and error I find that a test meeting both these criteria would be to throw the dice 3,600 times, and require 547 or fewer sevens to pass, or one seven per 6.58 rolls.

A one in seven shooter should average 514.3 sevens, with a standard deviation of 21.00. Using the Gaussian approximation, the probability of such a skilled shooter throwing 548 or more sevens (a false negative) is 5.7%. A random shooter should average 600 sevens, with a standard deviation of 22.36. The probability of a random shooter passing the test (a false positive) is 0.94%. The graph below shows the possibe results for skilled and random shooters. If the results are to the left of the green line, then I would consider the shooter to have passed the test, and I would bet on him.

The practical dilemma is if we assume two throws per minute, it would take 30 hours to conduct the test. Perhaps I could be more liberal about the significance level, to cut down the time requirement, but the results would not be as convincing. I do think the time has come for a bigger test than the 500-roll Wong experiment.

In the news today, a woman in Atlantic City rolled 154 times consecutively before sevening out at the Borgata. That means she rolled two dice 154 times, with no sevens. So I took (30/36)154, and came up with odds of over 1.5 trillion to 1. One is about 9,000 times more likely to win the Mega Millions lottery than to pull off a 154-consecutive non-seven dice roll marathon. Given how astronomically unlikely this is, and given that people are convicted on DNA evidence that is mere billions to one against being a false match, how much would you suspect cheating, and would you offer to consult the Borgata about this? I already called them, and gave them my name, and told them to do what they want with it. I’m curious as to your thoughts.

First of all, she rolled the dice a total of 154 times, with the 154th roll being a seven out (Source: NJ.com). However, that does not mean she never rolled a seven in the first 153 rolls. She could have rolled lots of them on come out rolls. As I show in my May 3, 2003 column, the probability of making it to the 154th roll is 1 in 5.6 billion. The odds of winning Mega Millions are 1 in combin(56,5)*46 = 175,711,536. So going 154 rolls or more is about 32 times as hard. Given enough time and tables, which I think exist, something like this was bound to happen sooner or later. So, I wouldn't suspect cheating. I roughly estimate the probability that this happens any given year to be about 1%.

Also see my solution, expressed in matrices, at mathproblems.info, problem 204.

I think some of the casinos in Las Vegas are using dice that are weighted on one side. As evidence, I submit the results of 244 throws I collected at a Strip casino. What are the odds results this skewed could come from fair dice?
Dice Test Data
Dice TotalObservations
26
312
414
518
623
750
836
937
1027
1114
127
Total244

7.7%.

The chi-squared test is perfectly suited to this kind of question. To use the test, take (a-e)2/e for each category, where a is the actual outcome, and e is the expected outcome. For example, the expected number of rolls totaling 2 in 244 throws is 244×(1/36) = 6.777778. If you don’t understand why the probability of rolling a 2 is 1/36, then please read my page on dice probability basics. For the chi-squared value for a total of 2, a=6 and e=6.777778, so (a-e)2/e = (6-6.777778)2/6.777778 = 0.089253802.

Chi-Squared Results

Dice TotalObservationsExpectedChi-Squared
266.7777780.089253
31213.5555560.178506
41420.3333331.972678
51827.1111113.061931
62333.8888893.498725
75040.6666672.142077
83633.8888890.131512
93727.1111113.607013
102720.3333332.185792
111413.5555560.014572
1276.7777780.007286
Total24424416.889344

Then take the sum of the chi-squared column. In this example, the sum is 16.889344. That is called the chi-squared statistic. The number of 'degrees of freedom' is one less than the number of categories in the data, in this case 11-1=10. Finally, either look up a chi-squared statistic of 10.52 and 10 degrees of freedom in a statistics table, or use the formula =chidist(16.889344,10) in Excel. Either will give you a result of 7.7%. That means that the probability fair dice would produce results this skewed or more is 7.7%. The bottom line is while these results are more skewed than would be expected, they are not skewed enough to raise any eyebrows. If you continue this test, I would suggest collecting the individual outcome of each die, rather than the sum. It should also be noted that the chi-squared test is not appropriate if the expected number of outcomes of a category is low. A minimum expectation of 5 is a figure commonly bandied about.

What would happen if the two dice landed stacked in craps? Would it be a valid roll? If so, how would the dealers reveal what number the lower die landed on?

Whether or not it is called a valid roll depends on where you are. New Jersey gaming regulation 19:47-1.9(a) states:

A roll of the dice shall be invalid whenever either or both of the dice go off the table or whenever one die comes to rest on top of the other. -- NJ 19:47-1.9(a)

Pennsylvania has the exact same regulation, Section 537.9(a):

A roll of the dice shall be invalid whenever either or both of the dice go off the table or whenever one die comes to rest on top of the other. -- PA 537.9(a)

I asked a Las Vegas dice dealer who said that here it would be called a valid roll, if it was otherwise a proper throw. Although he has never seen it happen, he said if it did the dealers would simply move the top die to see what number the lower die landed on. However, one can determine the outcome of the lower die without touching, or looking through, the top die. Here is how to do it. First, by looking at the four sides you can narrow down the possibilities on top to two. Here is how to tell according to the three possibilities.

  • 1 or 6: Look for the 3. If the high dot is bordering the 5, the 1 is on top. Otherwise, if it is bordering the the 2, the 6 is on top.
  • 2 or 5: Look for the 3. If the high dot is bordering the 6, the 2 is on top. Otherwise, if it is bordering the the 1, the 5 is on top.
  • 3 or 4: Look for the 2. If the high dot is bordering the 6, the 3 is on top. Otherwise, if it is bordering the the 1, the 4 is on top.

This question was raised and discussed in the forum of my companion site Wizard of Vegas.

What is the expected number of rolls of two dice for every total from 2 to 12 to occur at least once?

This question was asked at TwoPlusTwo.com, and was answered correctly by BruceZ. The following solution is the same method as that of BruceZ, who deserves proper credit. It is a difficult answer, so pay attention.

  1. First, consider the expected number of rolls to obtain a total of two. The probability of a two is 1/36, so it would take 36 rolls on average to get the first 2.

  2. Next, consider the expected number of rolls to get both a two and three. We already know it will take 36 rolls, on average, to get the two. If the three is obtained while waiting for the two, then no additional rolls will be needed for the 3. However, if not, the dice will have to be rolled more to get the three.

    The probability of a three is 1/18, so it would take on average 18 additional rolls to get the three, if the two came first. Given that there is 1 way to roll the two, and 2 ways to roll the three, the chances of the two being rolled first are 1/(1+2) = 1/3.

    So, there is a 1/3 chance we'll need the extra 18 rolls to get the three. Thus, the expected number of rolls to get both a two and three are 36+(1/3)×18 = 42.

  3. Next, consider how many more rolls you will need for a four as well. By the time you roll the two and three, if you didn't get a four yet, then you will have to roll the dice 12 more times, on average, to get one. This is because the probability of a four is 1/12.

    What is the probability of getting the four before achieving the two and three? First, let's review a common rule of probability for when A and B are not mutually exclusive:

    pr(A or B) = pr(A) + pr(B) - pr(A and B)

    You subtract pr(A and B) because that contingency is double counted in pr(A) + pr(B). So,

    pr(4 before 2 or 3) = pr(4 before 2) + pr(4 before 3) - pr(4 before 2 and 3) = (3/4)+(3/5)-(3/6) = 0.85.

    The probability of not getting the four along the way to the two and three is 1.0 - 0.85 = 0.15. So, there is a 15% chance of needing the extra 12 rolls. Thus, the expected number of rolls to get a two, three, and four is 42 + 0.15*12 = 43.8.

  4. Next, consider how many more rolls you will need for a five as well. By the time you roll the two to four, if you didn't get a five yet, then you will have to roll the dice 9 more times, on average, to get one, because the probability of a five is 4/36 = 1/9.

    What is the probability of getting the five before achieving the two, three, or four? The general rule is:

    pr (A or B or C) = pr(A) + pr(B) + pr(C) - pr(A and B) - pr(A and C) - pr(B and C) + pr(A and B and C)

    So, pr(5 before 2 or 3 or 4) = pr(5 before 2)+pr(5 before 3)+pr(5 before 4)-pr(5 before 2 and 3)-pr(5 before 2 and 4)-pr(5 before 3 and 4)+pr(5 before 2, 3, and 4) = (4/5)+(4/6)+(4/7)-(4/7)-(4/8)-(4/9)+(4/10) = 83/90. The probability of not getting the four along the way to the two to four is 1 - 83/90 = 7/90. So, there is a 7.78% chance of needing the extra 7.2 rolls. Thus, the expected number of rolls to get a two, three, four, and five is 43.8 + (7/90)*9 = 44.5.

  5. Continue with the same logic, for totals of six to twelve. The number of calculations required for finding the probability of getting the next number before it is needed as the last number roughly doubles each time. By the time you get to the twelve, you will have to do 1,023 calculations.

    Here is the general rule for pr(A or B or C or ... or Z)

    pr(A or B or C or ... or Z) =
    pr(A) + pr(B) + ... + pr(Z)
    - pr (A and B) - pr(A and C) - ... - pr(Y and Z) Subtract the probability of every combination of two events
    + pr (A and B and C) + pr(A and B and D) + ... + pr(X and Y and Z) Add the probability of every combination of three events
    - pr (A and B and C and D) - pr(A and B and C and E) - ... - pr(W and X and Y and Z) Subtract the probability of every combination of four events

    Then keep repeating, remembering to add probability for odd number events and to subtract probabilities for an even number of events. This obviously gets tedious for large numbers of possible events, practically necessitating a spreadsheet or computer program.

The following table shows the the expected number for each step along the way. For example, 36 to get a two, 42 to get a two and three. The lower right cell shows the expected number of rolls to get all 11 totals is 61.217385.

Expected Number of Rolls Problem

Highest Number NeededProbabilityExpected Rolls if NeededProbability not NeededProbability NeededExpected Total Rolls
20.02777836.00.0000001.00000036.000000
30.05555618.00.6666670.33333342.000000
40.08333312.00.8500000.15000043.800000
50.1111119.00.9222220.07777844.500000
60.1388897.20.9560440.04395644.816484
70.1666676.00.9736460.02635444.974607
80.1388897.20.9629940.03700645.241049
90.1111119.00.9448270.05517345.737607
100.08333312.00.9115700.08843046.798765
110.05555618.00.8438240.15617649.609939
120.02777836.00.6775710.32242961.217385

This question was raised and discussed in the forum of my companion site Wizard of Vegas.

According to the website Craps Advantage Players, Las Vegas casinos are routinely using weighted dice to increase the ratio of sevens and thus increase profits. I am incredulous! What does the Wizard have to say about this?

The Wizard says that website sounds like a lot of ranting and raving with no credible evidence whatsoever to justify the accusation. I'd be happy to expose any casino for using biased dice, if I had any evidence of it.
If anybody has legitimate evidence of biased dice, I'd be happy to examine it and publish my conclusions. Evidence I would like to see are either log files of rolls or, better yet, some actual alleged biased dice.
Furthermore, if the casinos really were using dice that produced more than the expected number of sevens, then why aren't these detectives privy to the conspiracy out there betting the don't pass and laying the odds?

The Hot Roll bonus round on slot machines awards the player the following number of coins according to the total of two dice. The player keeps collecting until he rolls a total of seven, which ends the bonus. If he rolls a seven on the first roll, he gets a consolation prize of 70 coins. Following are the prizes for all other totals besides seven:
  • 2 or 12: 1,000
  • 3 or 11: 600
  • 4 or 10: 400
  • 5 or 9: 300
  • 6 or 8: 200

My question is what is average bonus win?

Click the following button for the answer.

Click the following button for the solution.

Let x be the answer. As long as the player doesn't roll a seven he can always expect future wins to be x, in addition to all previous wins. In other words, there is a memory-less property to throwing dice in that no matter how many rolls you have already thrown you are no closer to a seven than you were when you started.
I won't go into the basics of dice probabilities but just say the probability of each total is as follows: Dice
  • 2: 1/36
  • 3: 2/36
  • 4: 3/36
  • 5: 4/36
  • 6: 5/36
  • 7: 6/36
  • 8: 5/36
  • 9: 4/36
  • 10: 3/36
  • 11: 2/36
  • 12: 1/36

Before considering the consolation prize, the value of x can be expressed as:

x = (1/36)*(1000 + x) + (2/36)*(600 + x) + (3/36)*(400 + x) + (4/36)*(300 + x) + (5/36)*(200 + x) + (5/36)*(200 + x) + (4/36)*(300 + x) + (3/36)*(400 + x) + (2/36)*(600 + x) + (1/36)*(1000 + x)

Next, multiply both sides by 36:

36x = (1000 + x) + 2*(600 + x) + 3*(400 + x) + 4*(300 + x) + 5*(200 + x) + 5*(200 + x) + 4*(300 + x) + 3*(400 + x) + 2*(600 + x) + (1000 + x)
36x = 11,200 + 30x

How Best To Roll Dice In Craps

6x = 11,200
x = 11,200/6 = 1866.67.
Next, the value of the consolation prize is 700*(6/36) = 116.67.
Thus, the average win of the bonus is 1866.67 + 116.67 = 1983.33.

Expert craps players say there is a specific way to set, control and throw the craps dice if you are eager to win. According to professionals, where are particular mistakes when handling and throwing the craps dice which can affect your game and make it unsuccessful. Fortunately, we are here to help you, and this article will offer valuable tips about dice setting and craps dice control so that you learn how to play like a professional. The main components of a good dice roll include developing ultimate control over the dice and understanding the various craps dice sets and their purposes.

Typically, dice rolls are random, and players cannot involve into games of craps without losing cash because they play by the rules and house edge established by the casino. However, acquiring proper control over the dice and developing a particular throwing technique can certainly be helpful for securing a win. Dice setting allows shooters choose a suitable set depending on their level of experienced and desired outcomes. Below you will learn more about dice control and setting so that you get a step closer to playing craps successfully.

Shaking And Rolling The Craps Dice

You have undoubtedly seen players who shake the craps dice before throwing them on the table. Their explanation is that the shaking helps for random numbers to come up. However, this is the easiest way to lose cash as the dice go all over the place. Why is that?

How To Roll Dice In Craps

The truth is that the random shaking of the craps dice will not help you win craps dice game in the long term. Casinos have invested a serious amount of cash paying talented mathematicians to calculate the odds and chances so that the betting provider always takes your money and wins. Craps players know that the number seven always bring benefits to the casino and is dangerous for players. Have you ever wondered why? The answer is straightforward: seven comes up more often than another number. Thus, if you place a pass line bet, the number seven can help you only for the come out throw. After the point gets established, there are more chances to throw seven than rolling the point. In case you make the don’t pass wager, the number seven has significantly more chances to steal the win from you.

Here are some valuable tips for inexperienced players about rolling the craps dice randomly:

  • An essential step is to understand craps dice control and to select among the crops dice sets. Choosing a suitable set for beginners may be a bit confusing, but the Hard Ways set is quite good because it offers great visual feedback.

  • Then place the dice square on the craps table and position them parallel to the back wall and facing it.

  • Before you roll the dice, you should select an area located at a few inches before the back wall. Try to land the dice on that place. Do your best to hit the same place as often as possible.

  • Rolling the dice should be gentle and should resemble the way players throw a basketball into the hoop. You should let the craps dice go when you have reached a three-fourth of the throw. Do not twist the dice in all directions in the air. When in midair, the two dice should stick to each other like they have been glued.

  • When landing, the dice should just touch the back wall, not slamming into it.

  • Pay attention to the numbers that come up. If you see that you often hit a given number combination, then your dice rolling improves.

Dice Craps – Best Craps Casinos

#casinobonuspayout limitwithdraw methodratinglearn more
Cherry Jackpot

200% on first 10 Deposits

$4,000 per Week

visa
bank
+3 more
Sloto Cash

200% Welcome Bonus

$3,000 per week

bank
+3 more
5
Spin Palace

Up to $1000 free

$4,000 per week

visa
+5 more
5

Craps Dice Control

According to the traditional theory, the craps dice setting can help players improve their control over the dice when they throw them and gives them the chance to boost their chances to win. There are hundreds of videos and tutorials about dice control in a craps dice game. Controlling the dice when playing craps is essential for your game and may make the difference between winning and losing. What is the importance of dice control?

Controlling the dice when playing craps gives players an edge over the other participants because they can throw the dice skewing the mathematical odds. Alongside with dice setting, the primary benefit of craps dice control is that the dice may roll a longer time, which gives the chance to secure increased number of wins. However, you should not forget that most of the rolls are random, even if the shooter has mastered craps dice control. Throws that manage to beat the house edge are very rare and quite a limited percentage of all rolls.

There are two types of shooters: the correlation shooter and the axis shooter. Both types of shooters strive to exercise control over the dice, trying to enhance their chances to succeed and to beat the house edge. The believers of the craps dice control theory suggest that shooters can have control over the numbers that come out of their throws depending on the way they hold the dice in their hands and throw them on the table. According to the proponents of the strategy, the setting, the grip and the delivery of the dice affect the effectiveness of dice controls in a game of craps.

The setting is the way you place the dice in your hand. There are various types of dice settings that we will discuss in details later on.

As it comes to the grip, it is essential that you apply equal pressure on the two dice. You can hold them with two or five fingers, depending on your personal style of gripping. If you are eager to make dice control useful, you should make sure that your grip is the same every time you roll the dice. The delivery of the dice is as crucial as throwing them. The dice should hit the backside of the table, but players should control the direction, the speed and the spin. To maximise the chances to succeed, you should throw the dice, in the same manner, every time you shoot.

You need a lot of practice to establish good dice control. Having a nice control over the setting, grip and landing of the dice, you reduce the chance to hit random numbers and boost the opportunity to throw successfully.

But does good control over the dice guarantees you will beat the casino and continue winning? Players should know that they will lose cash when playing against casinos and following their rules. To get closer to winning craps games, in the long run, you should understand the whole picture. You need to exercise control not only over the dice and the way you throw them but also over the environment and the other players. Of course, dice control, perfect throws plus other craps strategies will help you significantly improve your game and move a step closer to victory.

Dice Setting

The setting of the dice is an inseparable part of dice control. Players strive to set the dice so that they avoid hitting 7 when landing. Various types of craps dice sets control the dice and make sure they come out of your hand at the same time, carry out the same spins in the air, land together on the table and bounce off it.

Let us discuss the most popular craps dice sets:

Hardway Set

Best

This dice set is suitable for beginner to intermediate shooters who can produce a consistent and smooth delivery. Experts often claim the set provides ultimate protection against hitting seven. As the name of the set suggests, it involved putting hard way combination of top of the dice. Thus, you put the hard ten on top (five plus five), then the front will be a hard 6 or a hard eight. The bottom will consist of a hard four. The player can pick up any hard ways combos on the top. Keep in mind that the parallel faces in opposite directions add up to seven as this can help you set the dice in your hand with greater efficiency.

3V Set

This type of craps dice sets is suitable for intermediate players and is good for hitting sixes, eights and inside numbers, which are characterised by lower house edge in comparison with outside numbers. To position the 3V set, you need to set three in the shape of a V on top of the dice. The faces will show eight or six. The two dice should have parallel aligning, spin rate, trajectories and landing to perform a perfect dice roll.

2V Set

The 2V setting of the dice is good for hitting outside numbers, fours and tens. To position the dice in this particular setting, you need to place two and two on the top. Thus, the front will be four, ten, five or nine. The setting can successfully hit an outside number if the shooter can keep the two dice on axis, i.e. to maintain the dice rotating together.

All 7 Set

The All 7 Set is ideal for beginners, alongside with the Hardway set. The two craps dice sets will offer an excellent basis for players with less experience. The set is good for the come out dice roll and putting seven on top and the front faces of the dice. There are four possible combos for the top: 2 – 5, 5 – 2, 4 – 3 or 5 – 2.

Crossed Sixes

The Crossed Sixes set is suitable for advanced players and is good for come out rolls. It can quickly hit outside numbers, such as four, ten, five and nine, but it is also good for some craps numbers. You can see the pictures to get information how to position the dice in your hand.

Straight Sixes

The six craps dice sets we have listed above are necessary dice setting types and all they require the shooter to roll the dice on axis. Thus, if you position the two dice so that 6 and one are respectively on the left and right sides of the two dice, you should not hit six or one if you make an ideal roll on the axis. Such a strategy will help you reduce the chance to throw a seven consisting of the numbers six or one.

Dice Tips

Dice setting may seem somewhat confusing at first, but practice will make things easier with time. However, here are some handy tips that will simplify the process and will help you to passion the dice with just a couple of moves:

  • The opposite side of the number you are currently looking at adds up to seven. Thus, if the top of one dice is three, the bottom is four.

  • When the dice are in the middle of the craps table, do not stop looking at them. Select the dice setting you prefer before taking the dice in your hand.

  • To simplify the setting process, just find the number you wish to put on the top of the dice plus the number of the front that will face in your direction.

  • Prepare your hand to take the dice in the proper position with a flip.

Even though shooters throw craps dice randomly in each craps dice game, having some control over the dice is certainly a step closer towards adopting a successful strategy that will guide to have more successful bets in the long run. Craps dice control is essential for developing an improved throw, and dice setting is an inseparable part of the control players exercise during play. As we have already explained, the control over the dice allows players to master the way they throw and helps them develop a better rolling technique. The various dice sets make it possible to avoid hitting a seven and get numbers that you wish. However, dice control and setting do not always guarantee that you will win the craps dice game. The dice roll is a random process, and you can enhance it by constant practice.